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ABSTRACT: The effective permittivity and stored energy in nanocomposites incorporating dielectric and conducting nanofillers are

computed by simulating bipolar charge injection, transport, attachment, and recombination through amorphous polymer using a

self-consistent 3D particle-in-cell model with nanofillers treated as extensions to the classical electrical double layer. Effective permit-

tivities computed using an energy conserving scheme is shown to have excellent agreement with the Lichtenecker, Bruggeman, and

Maxwell-Garnett mixing rules especially at low volume fraction, low permittivity contrast, and small Clausius-Mossotti factor, and lie

well within the Wiener bounds. The energy conserving scheme with Maxwell-Garnett E field interpolation combines the best of the

Maxwell-Garnett and fundamental Lichtenecker rules and results in broad validity over the entire volume fraction range. Computed

stored energies show monotonic increase with dielectric fillers and a peak at 25 vol % for conducting fillers, attributed to the compet-

ing effects of higher energy with increasing E field modification and lower energy with decreasing binder volume. VC 2015 Wiley Periodi-

cals, Inc. J. Appl. Polym. Sci. 2016, 133, 43300.

KEYWORDS: amorphous; composites; nanoparticles; nanowires and nanocrystals; nanostructured polymers; theory and modeling

Received 25 September 2015; accepted 1 December 2015
DOI: 10.1002/app.43300

INTRODUCTION

Nanocomposite films incorporating well-dispersed ceramic

nanofillers within amorphous polymer binders are used as inex-

pensive, lightweight, self-healing capacitors for energy storage in

rapid power cycling applications.1 High permittivity ceramic

nanofillers (with typically low breakdown strength) are com-

bined with high breakdown strength polymers (with typically

low permittivity) in the right proportion, size range, and/or

polarization to result in nanocomposite films with high energy

density, Ue, given by Ue5
Ð

EdD, where E is the applied electric

field and D is the electric displacement. The effective permittiv-

ity of the nanocomposite is typically calculated using one of the

well-known Lichtenecker, Bruggeman, or Maxwell-Garnett mix-

ing rules; derived assuming purely Laplacian fields. It is an

accepted fact that the validity of these rules are limited to low

filler loading of less than 10-15 vol %.2 High contrast in per-

mittivity between the diphasic composite give rise to highly

inhomogeneous electric fields (E) in the “interaction zone”,

defined as the interfacial region that surrounds the nanofillers

and interspaces. These E fields together with structural inhomo-

geneity generally lead to a significant reduction in the effective

breakdown field strength of the composite, limiting the increase

in the energy storage capacity and energy density, and directly

impacting the effective permittivity. The challenge in matching

nanofillers with the polymer matrix is to understand the role of

the interaction zone where the very large area to volume ratio

of the interfaces in nanocomposites has significant impact on

the electrical and dielectric properties of the film.

Charge mapping studies help to define and quantify the taxon-

omy of the mobile, trapped, bound, and polarization charge

types and their abundance. Knowledge of the spatial and tem-

poral charge distributions facilitate insight into the dynamics of

charge redistributions which lead to breakdown at high fields or

prolonged usage. Empirical methods using pulse electroacoustic

(PEA) and laser induced pressure pulse (LIPP) techniques have

demonstrated preliminary feasibility.3,4 1D bipolar charge trans-

port models have described LDPE results.5,6 Recently, a hybrid

algorithm capable of handling leakage current up to prebreak-

down levels have been successfully applied to layered polymer

films and simulated PEA measurements.7 Axisymmetric models

capable of handling divergent field configurations have also

been reported.8,9 However, continuum charge transport models

are not suited to simulate material with morphology at the

nanometer length scale. Several models of nanoparticles are dis-

cussed in the literature, including the Tanaka Multicore 3-layer

and the Lewis models.10 The classical electrical double layer

(EDL) is similar to the Lewis model and is predicated on a

monopole net charge for the core. Charge transport is enabled

VC 2015 Wiley Periodicals, Inc.

WWW.MATERIALSVIEWS.COM J. APPL. POLYM. SCI. 2016, DOI: 10.1002/APP.4330043300 (1 of 13)

http://www.materialsviews.com/


by the increase in nanoparticle loading within the dielectric

composite eventually leading to overlap of the diffuse double

layers forming conduction paths. Bulk charge accumulation is

reduced due to this internal conductivity, and the dielectric

breakdown strength of the nanocomposite is improved.

This paper simulates the use of dielectric Alumina (Al2O3) and

conducting nanofillers in a polyamide/polyimide (PA/PAI)

binder using a self-consistent particle simulation model. The

EDL model is extended by substitution of a dipolar core and

used for dielectric nanofillers as shown in Figure 1(a) where the

induced polarization aligns with the bias electric field. The clas-

sical EDL model is used for conducting nanofillers as shown in

Figure 1(b). Charge passage with dielectric nanofillers may be

illustrated in Figure 1(a), where incoming positive charge is

repelled by the positive-end and attracted towards the negative-

end of the dipole and vice-versa. Charge is allowed to attach on

impact forming the bound Stern-Helmholtz layer. Subsequent

waves of incoming charge are repelled to form the diffuse outer

Gouy-Chapman transport layer. The cumulative charge buildup

on opposing ends of the dipole leads to Maxwell-Wagner-Sillars

(MWS) polarization. The gradual charge deposition and forma-

tion of the diffuse layers as charge migrates through the poly-

mer film creates the interaction zone. Trajectories for charges

that make it through the film to the counter-electrode are cur-

vilinear paths that meander through the interspaces. The corre-

sponding description for conducting nanofillers is shown in

Figure 1(b). For bipolar charge, the initial charge “1” impacts

the upper hemisphere of nanofiller followed by “2” subject to

recombination and net charge repulsion. In the unipolar case,

Coulomb repulsion from net charge may repel subsequent par-

ticle “3”. Induced free charge and impacted charge create an

equipotential surface on the nanofiller. Charges that arrive at

the counter-electrode are neutralized and therefore contribute

to the conduction of the film; but not to the field. Metal-

polymer charge injection assumes Schottky emission and

Fowler-Nordheim tunneling, migration through field-dependent

Poole-Frenkel mobility, and recombination with Monte Carlo

selection. A boundary integral equation method (BIEM) is used

for solution of the Poisson equation coupled with a second-

order predictor-corrector scheme for robust time integration of

the equations of motion. The stability criterion of the explicit

algorithm conforms to the Courant-Friedrichs-Levy (CFL) limit.

This paper will discuss an energy conserving scheme to com-

pute effective permittivity and stored energy in nanocomposites

and compare results for dielectric or conducting fillers. The cal-

culation will be based on results from bipolar charge injection,

transport, and recombination (electroluminescence) through

nanocomposite film comprising dielectric Alumina and con-

ducting nanofillers in amorphous polyamide/polyimide binder

for a range of nanofiller vol % loading.

MIXING RULES

The effective permittivities of nanocomposites may be calculated

from several well-known mixing rules. The Lichtenecker rule is

traditionally derived from Wiener theory for the effective per-

mittivity, eL, of two-phase anisotropic composites given by11:

ek
L5/f e

k
f 1 12/f

� �
ek

b (1)

where /f is the volume fraction of inorganic filler and ef and eb

are, respectively, the permittivities of the filler and polymer

binder. From Wiener theory, k 5 1 determines the upper bound

for plane-parallel layers and k 5 21 sets the lower bound for

layers perpendicular to the applied field with physical implica-

tions of capacitances in parallel and in series. The logarithmic

rule results from a special case of the power law model in the

limit as k!0, resulting in12:

ln eL5/f ln ef 1 12/f

� �
ln eb (2)

Macroscopic semi-analytic mixing notions based on the mean

field theory (MFT) have been applied to predict the effective

dielectric properties of mixtures without having to deal with the

details of microscopic fields. The effective medium approxima-

tion (EMA) approach replaces the physical diphasic problem of

multiple inclusions in an inhomogeneous medium with a single

Figure 1. (a) Extended EDL model for dielectric nanofiller (e.g., Al2O3) in amorphous polymer (e.g., PA/PAI) binder where initial charge “1” attach to

upper hemisphere of nanofiller followed by “2” until Coulomb repulsion from charge build-up allow subsequent particle “3” to pass resulting in MWS

polarization effect; and (b) EDL model for conducting nanofillers in amorphous polymer where impacted bipolar charge migrate freely on the surfaces

and recombine, resulting in equipotentials and Coulomb repulsion from net charge leading to particle trajectories meandering through the interspaces.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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inclusion surrounded by an effective homogeneous medium

with permittivity determined self-consistently. The symmetric

Bruggeman model for a spherical inclusion in a homogeneous

polymer binder is given by13:

/f

ef 2eB

ef 12eB

� �
1 12/f

� � eb2eB

eb12eB

� �
50 (3)

where eB is the Bruggeman effective permittivity, and both

terms carry the respective Clausius-Mossotti factors. These

expressions represent the strengths of the polarization fields for

small electrically homogeneous spherical inclusions of permittiv-

ities, ef and eb, embedded in a homogeneous medium of effec-

tive permittivity, eB. This equation is derived using the uniform

electric field inside the spherical filler and imposing the self-

consistent condition required by the EMA whereby the average

field inside the filler should equal the average field in the homo-

geneous medium.

Derivation of the Maxwell-Garnett formula from the MFT

requires consideration of an array of polarizable and separated

particles, use of the Clausius-Mossotti factor, and incorporating

the polarization influence of neighboring particles to obtain14:

eMG2eb

eMG12eb

� �
5/f

ef 2eb

ef 12eb

� �
(4)

An integral average may also be obtained by sampling the per-

mittivity, summing over the filler and binder volumes, Vf and

Vb, and then dividing out by the volume, V, of the composite:

evf 5

Ð
V

eidVÐ
V

dV
5

Ð
Vf

ef dVf 1
Ð

Vb
ebdVbÐ

V
dV

5/f ef 1 12/f

� �
eb (5)

where

ei5
ef ; ri 2 filler

eb; ri 2 binder

(
(6)

which results in the volume fraction approximation of linearly

interpolated permittivity, identical to the upper bound of the

Lichtenecker rule with k 5 1 in (1).

Generally, the Bruggeman and Maxwell-Garnett formulae are

valid at low volume fractions due to the assumption that the

spherical inclusions are spatially separated. Beyond the infinite

wavelength or quasi-static limit, the EMA can also be general-

ized to finite frequencies, provided the size of the inhomogene-

ity is small relative to the wavelength of the electric field in the

composite medium. An implicit assumption is that the electric

fields and displacements should be approximately uniform

within any given inclusion of the inhomogeneous medium.

A rigorous derivation of the Lichtenecker rule starting from

Maxwell’s equations and invoking charge conservation between

the heterogeneous mixture and the homogeneous effective

medium representation was recently reported.15 A key assump-

tion is to replace the charge density at any position by the

mean charge density of the mixture thereby allowing the charge

fraction to be replaced by the volume fraction. The Lichtenecker

rule was derived for random distributions without any restric-

tion on the shapes of the inclusions. Using the Clausius-

Mossotti factor, ef 2ebð Þ= ef 12ebð Þ, which defines the magnitude

of the polarization field for an electrically small dielectric spher-

ical inclusion of permittivity, ef, embedded in a homogeneous

medium of permittivity, eb, and taking only the first (linear)

term of the binomial expansion results in the Maxwell-Garnett

formula. Thus the Maxwell-Garnett is shown to be an approxi-

mation to the Lichtenecker rule for small volume fractions,

spherical inclusions, and small Clausius-Mossotti factor. Simi-

larly, the symmetric Bruggeman rule is derived from the Lichte-

necker rule by treating the two Clausius-Mossotti factors:

ef 2eBð Þ= ef 12eBð Þ and eb2eBð Þ= eb12eBð Þ in the same manner,

i.e. assuming spherical inclusions, only first order interactions

between inclusions, small permittivity contrast, and small

Clausius-Mossotti factors. The simplifying assumptions to

derive the Maxwell-Garnett and Bruggeman rules from the

Lichtenecker rule suggest that the Lichtenecker rule is more fun-

damental in nature.

Commercial software has been used to compute the complex

effective permittivity of nanocomposites using the Drude free

electron model and a bound electron term.16 Other methods of

frequency dependent calculation include the use of impedance

cells,17 and equivalence capacitance model,18 and solution of the

Maxwell equations for wave propagation using finite-difference

time-domain (FDTD) in 2D12 where the authors claim that no

model seems able to predict the simulated behavior over the

entire range of volume fractions.

CHARGE TRANSPORT ALGORITHM

Formulation of the bipolar charge transport algorithm involves

particle simulation of ensemble charge motion in an electro-

static field implemented as a time-iterative two-step approach

of field-solve and particle-push. The equations of motion are

integrated within a computational cell subject to periodic

boundary conditions and particle interactions with random dis-

tributions of nanofillers in an amorphous polymer binder. This

self-consistent model includes consideration for charge injec-

tion, transport, attachment/detachment, and recombination.

Only salient features of this algorithm are briefly discussed here

as it is not the focus of this paper. Complete details are avail-

able in the literature.19–22

Field Solution and Particle Simulation

The computational cell used for the nanoscale simulations is

shown in Figure 2 where the 500 nm nanocomposite layer is

sandwiched between two 250 nm amorphous polymer layers.

The cell is a cuboid of edge dimension 1 lm, volume of 1 lm3,

bounded by 4 vertical side walls with zero flux condition (@//

@n 5 0), and top (anode) and bottom (cathode) electrodes at

constant potential to maintain the bias E field. Periodic bound-

ary conditions imposed on the 4 vertical walls force exiting par-

ticles to re-enter at the opposite side walls. The composite E

field has contributions from the bias voltage, injected mobile

charge, attached charge on nanofillers, and free charge on con-

ducting fillers or polarization field from dielectric fillers. The

solution of the Poisson equation is obtained using the boundary

integral equation method (BIEM), based on the use of the free

space Green function as the solution to a point source. Instead

of the classical approach of deriving a particular Green function
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that incorporates geometry, material properties, and boundary

conditions, linearity and superposition is invoked to solve an

equivalent (and simpler) problem. The source distribution tech-

nique (SDT) treats mobile space charge and bulk trapped

charge as volume sources, and replaces conducting boundaries

and material interfaces with appropriate distributions of

unknown free and bound interfacial polarization and trapped

charges to satisfy the specified boundary and interface condi-

tions. Enforcement of boundary conditions for potential and

flux and interface conditions at material interfaces for continu-

ity of tangential E and normal D (5eE) for Dirichlet, Neu-

mann, and dielectric interface conditions, respectively, result in

a system of integral equations for the unknown charge densities.

For conducting nanofillers, bipolar mobile charge that impact

are treated as free charge that migrate on the surface and there-

fore neutralize, resulting in a net charge which together with

the charge induced by the bias field create a floating equipoten-

tial. Since this potential is not known apriori, an additional

equation is required for each nanofiller to augment the system

of equations in order to solve for these equipotentials.

Selective enforcement at collocation points discretized the equa-

tions resulting in a matrix that is inverted to determine the

magnitude of the free and bound polarization source distribu-

tions. Then fields and field derivatives are then computed by

integrating contributions from all the source distributions. Ker-

nel functions, including the Green function and its analytic

derivatives (G, @G/@n, and rG) are integrated numerically

using Gauss-Legendre quadrature. Singular kernels are accu-

rately computed using minimum order sampling by tying the

quadrature weight function to the singularity. Details on the

computation of these integrals are discussed in detail for axi-

symmetric and 2D geometries.7–9 Discretized forms of these

equations are solved simultaneously for free charge on electro-

des and bound charge on material and physical interfaces to

fully determine the Poisson solution.

Nanofillers are randomly distributed within the cell to the pre-

scribed vol % loading using “hard sphere” logic; i.e., allowing

contact but no over-lap. Discrete numbers of charge particles,

dictated by the current density and time-step, are continuously

injected from the electrodes as a function of the averaged elec-

trode E field. Injection locations are randomly dispersed over

the electrode surface. Charge particles migrate through the

nanofiller distribution under the composite E field subject to

particle-particle interactions, and particle attachment to nanofil-

lers with those arriving at the counter-electrode considered neu-

tralized and therefore having no further contribution to the E

field. Particle tracking involves a predictor-corrector algorithm

of order Dt2, or second-order accurate in time, to integrate the

equations of motion subject to the applied bias. To minimize

local error, displacement, Dh, is required to be smaller than the

Debye length, i.e. LD 5 (ekBT/q2Ni)
1=2, where Ni is the largest

charge number density. The time step, Dt, needs to be shorter

than the dielectric relaxation time, s 5 e/qNil, characteristic of

charge fluctuations to decay. The stability criterion of the

explicit algorithm is given by the CFL limit, c5jvDt=Dhj � 1,

which represents the ratio of mobile charge velocity, v, to trace

velocity, Dh/Dt. For stability, the trace velocity cannot be faster

than the speed of the charge.23 A tacit assumption is that the

field is “frozen-in” relative to the time step of charge migration,

and the transient time to attain terminal velocity is much

shorter than the mean free path or the time between collision

events of oppositely charged particles. A self-consistent particle-

particle, particle-mesh (P3M) scheme may be implemented for

very large numbers of particles.24–26

Charge Injection, Transport, Attachment, and Recombination

At low to moderate applied fields, charge injection from a metal

electrode into the lowest unoccupied molecular orbital (LUMO)

band of the polymer is by Schottky barrier thermionic emission

where the combined effect of the image force and the applied

field result in a lowering of the barrier potential. At higher

applied fields, the slope is steeper and the barrier is further low-

ered so that the tunneling length is much shorter, increasing the

probability for tunneling through the barrier. Charge injection

from a metal electrode into the polymer is treated using the

Fowler-Nordheim quantum mechanical tunneling model.

At low-fields and low densities, carriers are almost in equilib-

rium with the lattice vibrations so low-field mobility is mainly

affected by phonon and Coulomb scattering. The mobility

increases until the velocity approaches the random thermal

velocity. In a moderately large electric field, less thermal fluctua-

tion is required to free charge allowing for higher conduction

via the Poole-Frenkel mobility. At higher electric fields, mobility

decreases with increasing electric field due to increased lattice

scattering at higher carrier energies, and carrier velocity satu-

rate. The Caughey-Thomas field-dependent mobility is used to

provide a smooth transition between low-field and high field

behavior.27

Trapped charge on nanofiller surfaces are considered to be

attached charge. In the EDL model, initial charge attachment to

nanofillers are assumed to be deterministic, i.e. attachment on

impact, or probability Pt(t)51. Subsequent taper-off due to

Coulomb force and dipole field repulsion from build-up of the

attached charge follow the MWS effect, i.e., Pt(t)!0 as the lim-

iting behavior. Charge detachment may be physically controlled

by comparing the local field to the trap depth in the de-

trapping rate.7

Figure 2. Side view of computational cell with 500 nm nanocomposite

layer sandwiched between 250 nm layers of amorphous polymer, current

injection through upper and lower electrodes, and zero flux boundary

conditions for vertical walls. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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The Monte Carlo collision model is used to describe particle-

particle events between oppositely charged entities resulting in

recombination.25 The probability of a collision of the ith charge

particle with a charge particle of the opposite polarity in a time

step Dt is Pi512e2n0r Eið ÞviDt , where n0 is the number density of

the opposite polarity mobile charge, r(Ei) is the total collision

cross-section which in general depends on the kinetic energy of

the ith particle (could be larger than the geometrical cross-

section, r 5p ri1rj

� �2
), and vi is the velocity of this particle rel-

ative to the velocity of the opposite polarity particle. Therefore,

nor is a measure of the number of collisions per unit length, 1/

nor is the mean free path between collisions, and norvi is the

collision frequency. For a finite Dt, the probability of a collision

is determined by comparing Pi with Ri, a uniform random

number between 0 and 1. For Pi>Ri, particle i is considered to

have sustained a collision within the time step Dt resulting in

recombination and neutralization of the charge pair. Otherwise,

Monte Carlo selection returns a nonevent.

ENERGY CONSERVING SCHEME

The 3D PIC model is used for dynamical solution of the charge

transport equations to compute stored energy and derive effec-

tive DC permittivity through an energy conserving scheme

without any restrictions on particle interactions, permittivity

contrast, or magnitude of the Clausius-Mossotti factors. The

steps to this scheme are as follows:

1. Map 1D Gauss-Jacobi quadrature into 3D orthogonal distri-

bution to integrate the computational cell as a single volume

entity where the numerical quadrature to integrate

F(x) 5 w(x)f(x) is expressed as the summation of the

sampled function with the corresponding weight:ðb

a

F xð Þdx5
X1

i51
wif xið Þ �

Xn

i51
wif xið Þ (7)

The Gauss-Jacobi quadrature is a specialized form given

by28:ð11

21

12xð Þa 11xð Þbf xð Þdx 5
Xn

i51
Aif xið Þ10 hð Þn (8)

Using a 5 0, b 5 0, simplifies the integrand to f(x). Sampling

locations, xi, are the n roots of the Gauss-Jacobi polynomial,

P a;bð Þ
n xð Þ, of degree n, and Ai are the coefficients of xi in

P a;bð Þ
n xð Þ given by:

Ai52
2n1a1b12

n1a1b11

C n1a11ð ÞC n1b11ð Þ
n1a1b11ð Þ n11ð Þ!

2a1b

P
0
n xið ÞP 0n11 xið Þ

(9)

2. Assume permittivity, ei, or field, Ei, as 3D distributions

defined by the random distributions of filler in the binder

within the computational cell and sample according to (6)

and:

Ei5
Ef ; ri 2 filler

Eb; ri 2 binder

(
(10)

where ei and Ei take on filler or binder values based on the

sampling location.

3. Compute energy, W, using:

W 5

ð
V

1

2
e0er E2dV �

Xm

i51

1

2
e0eiE

2
i 5
Xm

i51

1

2
e0eeff E2

ave (11)

where Eave for dielectric and conducting fillers are, respec-

tively, given by:

Eave5

Ð
V

EidVÐ
V

dV
5

Ð
Vf

Ef dVf 1
Ð

Vb
EbdVbÐ

V
dV

� hEf i/f 1hEbi 12/f

� �
(12)

and

Eave5

Ð
V

EidVÐ
V

dV
5

Ð
Vb

EbdVbÐ
Vb

dVb

� hEbi 12/f

� �
(13)

with the field, Ef, vanishing in the interior of the conducting

filler and angular brackets denoting volume average. In (12),

the volume averaging reduces to a volume fraction (linear)

interpolation of the E field between the volume averaged

fields in the filler and the binder.

4. Equating energy expressions in (11) and substituting for the

average electric field, Eave, results in an expression for the

effective permittivity, eeff:

eeff 5

Ð
V

eiE
2
i dV

E2
ave

Ð
V

dV
5
hW 0i
E2

ave

5
hW 0i

hEf i/f 1hEbi 12/f

� �h i2
(14)

with the volume averaged energy-related parameter, hW 0i; given

by:

hW 0i5
Ð

V
eiE

2
i dVÐ

V
dV

(15)

An intuitive alternative for E field interpolation is the Maxwell-

Garnett formula with e replaced by E:

EMG5Eb13/f Eb

Ef 2Eb

Ef 12Eb2/f Ef 2Eb

� � (16)

The asymptotic limits for effective permittivities are given by:

lim/f!1eeff 5
hW 0i

hEf i1/f 1hEbi 12/f

� �h i2
� hW ’i
hEf i
� 	2

lim/f!eeff 5
hW 0i

hEf i1/f 1hEbi 12/f

� �h i2
� hW ’i
hEbi½ �2

(17)

where hEbi � hEf i. The rate of change of effective permittivity

with volume fraction is given by:

deeff

d/f

5
2hW 0i hEbi2hEf i

� �
hEf i/f 1hEbi 12/f

� �h i3
(18)

with the asymptotic limits:

lim/f !1

deeff

d/f

5
2hW ’i hEbi2hEf i

� �
hEf i
� 	3

> 0

lim/f !0

deeff

d/f

5
2hW ’i hEbi2hEf i

� �
hEbi½ �3

> 0

(19)

so that with hEbi � hEf i; the inference is:
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deeff

d/f

j/f!1 �
deeff

d/f

j/f!0 (20)

Since Eave decreases linearly with increasing /f, the effective per-

mittivity increases as 1=E2
ave , and the gradient increases as

1=E3
ave , or at an increasingly higher rate.

RESULTS AND DISCUSSION

The model for the nanocomposite film is a random distribution

of 100 nm spherical Alumina or conducting nanofillers between

1.0 to 66.0 vol % loading in a PA/PAI binder. The sample is a

500 nm layer sandwiched on the top and bottom by 250 nm

amorphous polymer layers. Detailed results are generated about

the triplet: E 5 100 V/lm, 100 nm nanofiller size, and 4.0 vol %

to illustrate the capability of the 3D charge transport model.

Effective permittivity and stored energy for dielectric and con-

ducting nanofillers are computed over the loading range with

run times adjusted to ensure the same amount of injected

charge to compare results. Table I summarizes the simulation

parameters used which are drawn from Refs. 5–7. For discus-

sion, define the charge that arrives at the counter-electrodes as

leakage conduction charge. Previous studies on ferroelectric

BaTiO3 (with similar field behavior to other Perovskites such as

TiO2, or ZrO2) in PVDF have determined that anti-parallel

polarization results in the highest leakage conduction and the

lowest level of charge trapping in the interaction zone.19–22

Figures 3(a,b) show the perspective views of 3D scatter plots for

randomly distributed 100 nm Alumina or conducting nanofil-

lers (large blue circles) at 4.0 vol % loading, and positive and

negative attached charge (red and blue dots), mobile charge

(crimson and cyan dots), and leakage conduction charge at the

counter-electrodes (rouge and navy dots) for dielectric and con-

ducting nanofiller, respectively. Bipolar charge attachment to the

nanofillers, i.e. positive to the upper hemisphere and negative

to the lower hemisphere are clearly illustrated where in the case

of Figure 3(b), opposite signed charge undergoes charge

neutralization.

Charge arrived at the counter electrodes form uniquely distinct

patterns resulting from the impact locations of the meandering

conduction paths through the nanofiller distributions. Empty

areas indicate more field deflection in the case of dielectric

nanofillers. More solid area patterns generally indicate higher

leakage conduction.

Electroluminescence (EL) in dielectric polymers is attributed to

hot carrier impact ionization and/or bipolar charge recombina-

tion. Both processes point to the release of energy which dissi-

pates through pathways leading to eventual chemical

degradation.29 Shown in Figure 4(a,b) are the top views of

recombination scatter plots for dielectric and conducting nano-

fillers, respectively, where large blue circles are the nanofillers

and red dots denote recombination sites of mobile charge pairs.

Bipolar charge recombination is computed from collision prob-

ability and results in sites that are distributed only within the

polymer binder. Recombination is more extensive for conduct-

ing nanofillers due to higher leakage conduction.

In Figure 5(a,b), the normal components of E fields averaged

over the electrodes are plotted in time for the dielectric and

conducting nanofillers. The initial dip in E field is due to accu-

mulation of injected charge adjacent to the electrodes prior to

migration away through the nanocomposite layer. Arrival of

counter charge after 1 transit time reduces the space charge

effect which allows the field to re-elevate. The slight difference

(<1%) in vertical E field is due to the random depth distribu-

tion of nanofillers which is biased 1.14% towards the anode.

Larger peaks and steady-state amplitudes are observed for the

conducting nanofillers. Figure 6(a,b) show the injected positive

current densities using Schottky emission for the dielectric and

conducting nanofillers, respectively, where the initial dips follow

the dips in the E field as seen in Figure 5(a,b). Injected positive

Table I. Simulation Parameters

Parameter Value Description

lp 9 3 10211 cm2/V.s Mobility of positive charge

ln 9 3 10211 cm2/V.s Mobility of negative charge

Wp 1.2 eV Anode barrier potential

Wn 1.2 eV Cathode barrier potential

ePA/PAI 4.9 Dielectric constant PA/PAI

eAlumina 8.5. Dielectric constant Alumina

dAlumina 100 nm Diameter of Alumina

vol % 1.0 2 66.0% Nanofiller loading

Figure 3. Side view scatter plots of randomly distributed nanofillers and mobile, conduction, and attached bipolar charge within the computational cell

with uniquely different distributions of positive (rouge) and negative (navy) leakage conduction charge arrived at the counter-electrodes (lower cathode

and upper anode) for: (a) dielectric nanofillers; and (b) conducting nanofillers. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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and negative currents are nearly identical so only the positive

polarity is shown here. Shown in Figure 7(a,b) are the positive

charge fractions for attached, conduction, mobile, and recom-

bined components of the dielectric and conducting nanofillers,

respectively. Positive and negative charge fractions are nearly

identical so only the positive is shown here. The fractions

asymptote with time to steady-state levels. There is a higher

level of attached charge than conduction charge for dielectric

nanofillers and vice versa for conducting nanofillers.

Figure 8(a,b) show leakage conductivity of the positive and neg-

ative mobile charge over time, calculated from current continu-

ity as the ratios of charge density arriving on the surface to the

surface-averaged E field on the counter electrodes:

rp5
1q=Area

Ecathode

Dp

Dt

� �

rn5
q=Area

Eanode

Dn

Dt

� � (21)

where Dp and Dn are the number of charge particles that arrive

in time Dt. Conductivities of cases with dielectric and conduct-

ing nanofillers are calculated using (21) for 100 nm particles at

E 5 100 V/lm and 4.0 vol % loading, a level below the percola-

tion threshold. The estimates stabilize after about 5 transit

times, probably due to the dynamics in the interaction zone, to

�0.32 x 10214 S/cm for dielectric nanofillers, in agreement with

published data for plastics of 0.3 x 10214 S/cm. Higher leakage

conductivities of 0.4 x 10214 S/cm is seen for conducting

Figure 4. Top view scatter plots with nanofillers (blue circles) and recombination sites (red dots) which are clustered only in the open spaces in the poly-

mer binder for: (a) dielectric; and (b) conducting nanofillers. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.

com.]

Figure 5. (a) Dielectric; and (b) conducting nanofiller E fields averaged over electrodes where initial dips are due to accumulation of injected charge

adjacent to electrodes before migration through nanocomposite and subsequent arrival of counter charge after 1 transit time. The slight difference

(<1%) in vertical E field is due to random depth distribution of nanofillers which is skewed towards the anode by 1.14%. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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nanofillers. The higher conductivity of conducting nanofillers

over the dielectric counterpart is probably due to the effect of

lower attached net charge where surface migration and ensuing

neutralization act to negate the cumulative effect of charging.

The trends in leakage conduction are to increase with filler size,

and bias E field, and decrease with loading, with the dielectric

filler undergoing more rapid changes.

The next set of results examines the trend over the range of fil-

ler permittivities which are 5x, 10x, 20x, and 100x the permit-

tivity of the PA/PAI binder; i.e. ef 5 5eb, 10eb, 20eb, and 100eb.

Figure 9(a) shows the calculated effective permittivities up to 66

vol % filler loading. In each case, the effective permittivity value

at 100 vol % loading would be that of the filler. Asymptotic

limits on the rate of change of effective permittivity with load-

ing in (18) show much higher value when volume fraction

/f!1 than when /f!0, thus explaining the lower values below

50 vol %. Figure 9(b) shows the fractional energies stored in

the filler and binder for the four filler permittivities versus load-

ing where it is evident that at higher permittivities most of the

energy is stored in the binder due to the vanishingly small filler

field.

In Figure 10(a,d) are shown the computed effective permittiv-

ities compared against the Weiner lower and upper bounds and

the Lichtenecker, Bruggeman, and Maxwell-Garnett rules for the

range of filler permittivities. Spline fits are used to span the

region between 66 vol.% and 100 vol.%, where each curve is

seen to conform quite well in passing through every data point.

Several notable features are apparent, and include: (1) The Wie-

ner upper bound for the Lichtenecker rule is the linear interpo-

lation between the filler and binder permittivities, and is

identical to the volume fraction approach in (5); (2) Effective

permittivities from the PIC energy conserving schemes and the

Figure 6. Positive current densities for: (a) dielectric; and (b) conducting nanofillers with initial dips are due to accumulation of injected charge adjacent

to the electrodes before arrival of counter charge after 1 transit time. [Color figure can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]

Figure 7. Attached, conduction, mobile, and recombined charge fractions for: (a) dielectric; and (b) conducting nanofillers. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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Lichtenecker logarithmic rule all lie between the Wiener lower

and upper bounds; (3) The Bruggeman rule predicts consis-

tently higher values, beyond 15-20 vol %, due to the assump-

tions of small permittivity contrast and small Clausius-Mossotti

factor; (4) The Maxwell-Garnett rule assumes small volume

fractions in addition to the other assumptions for the Brugge-

man rule, accounting for the big disparity with the rest at high

volume fractions, large permittivity contrast, and small

Clausius-Mossotti factor; (5) The Lichtenecker rule, derived

directly from the Maxwell-equations, is a fundamental rule with

more accurate predictions than either the Bruggeman or

Maxwell-Garnett rules; (6) The PIC energy conserving scheme

includes the effect of charge transport and resulting field modi-

fication (enhancement), and predicts lower values than the

Lichtenecker rule given the higher Eave and linear interpolation

of the E field from (14); (7) The version of the PIC energy con-

serving scheme using Maxwell-Garnett interpolated E field,

results in higher values, closer to the Lichtenecker rule, over the

entire loading range; (8) At high permittivity contrasts, both

PIC energy conserving schemes converge on the Lichtenecker

rule at high loading, indicating more accurate predictions; and

(9) The predicted permittivities from the Maxwell-Garnett rule

and the PIC energy conserving scheme with Maxwell-Garnett E

field interpolation are nearly coincident and only diverges

beyond 60 vol.%, probably due to the charge dynamics and

resulting field modification which is not considered by the

Maxwell-Garnett rule.

Figure 11(a) shows the interpolation of the E field, and the

resulting computed effective permittivity using the PIC energy

conserving scheme is shown in Figure 11(b). Using the volume

fraction approach in (12), akin to linear interpolated E field,

results in a more conservative lower bound prediction of the

effective permittivity. The Maxwell-Garnett interpolation in (16)

obtained by substituting E for e results in a higher effective

Figure 8. Computed conductivities for 100 nm, 4.0 vol.% loading, and E5100 V/lm with bipolar charge injection for: (a) dielectric; and (b) conducting

nanofillers. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 9. (a) Computed effective permittivities using the PIC energy conserving scheme for ef55eb, 10eb, 20eb, and 100eb; and (b) corresponding energy

fractions stored in the filler and binder. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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permittivity and may be a better scheme. Conducting fillers

result in higher effective permittivity as shown in Figure 12(a),

plotted with the family of curves for ef55eb. Figure 12(b) shows

comparison of effective permittivities with ef510eb using both

linear and Maxwell-Garnett interpolated E fields. The effective

permittivity with the conducting filler is much higher than for

Figure 10. Computed effective permittivity using the PIC energy conserving scheme compared to Wiener bounds and Lichtenecker, Bruggeman, and

Maxwell-Garnett rules with eb54.9 over the range of filler loading for: (a) ef55eb; (b) ef510eb; (c) ef520eb; and (d) ef5100eb. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 11. (a) E field interpolation; and (b) resulting computed effective permittivities versus loading using the PIC energy conserving scheme. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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the dielectric filler; agreeing with observations of significant per-

mittivity enhancement.

Shown in Figure 13(a) is the normalized energy density stored

in the binder for conducting fillers which peaks at about 25

vol % loading due to the behavior of the eeffEave
2 term which

has a maxima because eeff increases while average Eave decreases

with increasing loading. The peak is due to the competing

effects of higher energy with increasing average field and lower

energy with decreasing binder volume. It is clear that this peak

will shift with nanofiller size, making it a tunable design crite-

rion. Figure 13(b) compares the stored energy versus filler load-

ing computed from static (Laplacian) and charge transport

solutions showing the higher energy of the latter which may be

attributed to charge interactions and the resultant field modifi-

cation. The energy decreases in monotonic manner as the load-

ing increases due to decreasing storage volume of the binder.

Finally, the corresponding calculations for dielectric fillers is

shown in Figure 14(a) where the stored energy increases at a

similar rate to the effective permittivity curve with filler loading

for ef510eb. Eave decreases with filler loading in Figure 14(b) as

the contribution from the lower E field in the filler increases

with volume fraction.

CONCLUSIONS

This paper has described the use of a rapid 3D particle simula-

tion algorithm for charge transport through the nanocomposite

film comprised of dielectric and conducting nanofillers in

Figure 12. Computed effective permittivity versus loading: (a) with ef55eb compared to conducting filler; and (b) with ef510eb compared to conducting

fillers and linear and Maxwell-Garnett interpolated E fields used in the PIC energy conserving scheme. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 13. Stored energy (normalized to value at 1 vol.%) as function of loading for conducting filler with eb54.9: (a) showing peak at about 25 vol.%

due to contrasting effects of higher field and decreasing binder volume; and (b) comparing static and dynamic calculations where the E field is enhanced

by trapped and mobile charge. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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amorphous polymer binder to compute stored energy and to

derive effective permittivity using an energy conserving scheme.

Simulation results for charge fractions versus loading show dif-

ferences in behavior with implications to energy storage. Dielec-

tric nanofillers serve the role as trapping sites to prevent charge

propagation and eventual accumulation to form packet charge

that contribute to failure. Conducting nanofillers at loadings

below the percolation threshold are shown to increase the effec-

tive permittivity of the nanocomposite film to raise the energy

density, confirming accepted conventional understanding.

Effective permittivities computed using the new energy conserv-

ing scheme are shown to have excellent agreement with estab-

lished Lichtenecker, Bruggeman, and Maxwell-Garnett rules

especially at low loadings, low contrast, and small Clausius-

Mossotti factors. The PIC energy conserving scheme using lin-

ear interpolated (volume fraction) E field results in a lower

bound for effective permittivity. The Maxwell-Garnett interpo-

lated E field improves on the computed effective permittivity,

especially at lower volume fractions when it overlays the

Maxwell-Garnett mixing rule, indicating the self-consistent

behavior of the effective permittivity and interpolated E field.

At higher loading, the two curves diverge showing the difference

in neglecting higher order interactions and use of the static E

field solution for the mixing rule. The asymptotic permittivity

values at high loading follows the more fundamental Lichte-

necker rule. Overall, the energy conserving scheme with

Maxwell-Garnett E field interpolation combines the best of the

Maxwell-Garnett and more fundamental Lichtenecker rules and

results in the broadest validity over the entire volume fraction

range.

The use of dielectric fillers show a monotonic increasing stored

energy with increasing loading which also scales with the per-

mittivity contrast. Stored energy with conducting fillers scale

linearly with the binder permittivity and exhibits a peak at

about 25 vol.% due to the competing effects of higher energy

with increasing average field and lower energy with decreasing

binder volume. The comparison of stored energy from Lapla-

cian static and dynamic charge transport calculations show that

the energy is higher in the latter due to E field modification

(enhancement) by trapped and mobile charge.
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